Development of the Fragment Separator Designs for RIA

Brad Sherrill, Michigan State University

with D.J. Morrissey, M. Amthor, and O. Tarasov

Overview of the Fragment Separation Technique

Sample Data from the A1900

The NSCL has Extensive Experience in Separator Design

• The A1200 separator was completed in 1989 and was the heart of the NSCL radioactive beam program for 10 years. RNB experiments were more than 60% of the experimental program.

Sherrill, Morrissey, Nolen, Winger NIM B56 (1993)

• The A1900 separator was designed to be optimized for the Coupled Cyclotron Facility. It was completed in 2001.

Morrissey, Sherrill, Steiner, Stolz, Wiedenhoever NIM B204 (2003)

• The A1900 will be a testing ground for RIA fragment separator concepts.

LISE – Necessary Tool for RIA Separator Design

LISE 6.2.21

O. Tarazov, D. Bazin

Allows a full first-order simulation of fragment separator designs including momentum compression and stopping in gas.

To Do List:

Verify current code

Fission

Monte Carlo

Yield vs. Fragment Separator Momentum Acceptance

⁷⁸Ni production from ⁸⁶Kr+⁹Be fragmentation

Production from secondary reactions are not included.

Yields for Projectile Fission (Schematic Model)

Energy Dependence of RI Production: RIA Example

In-flight fission

The turn over point depends on the fragment separator acceptance.

A smaller acceptance fragment separator produces a later turnover.

Basic Design Goals for the RIA Separators

- Two Separators are needed in the RIA concept
 - High acceptance (12%,10 msr) to feed ions into the gas catching station.
- -> Pre-separator -> Separator -> Momentum compression -> Gas cell
 - Higher resolution (higher rejection of unwanted fragments) to feed ions to the high energy experimental area: (6%, 8msr)
- 10 T-m maximum rigidity is desirable for the most neutron rich fragments (10 Tm vs 8 Tm is a factor of 2 in yield for ⁴¹Al from ⁴⁸Ca).
- Higher order aberrations must be kept low
 - Purity of the separated fragments
 - Stopping efficiency

Results of ion optical aberrations

Calculations done with LISE (initial spot size varied)

¹³³ Te	¹³⁴ Te	
	1.02e+5	
	0.003%	
132Sb	¹³³ Sb	
1.01e+3	2.5e+6	
0%	2.091%	
¹³¹ Sn	132Sn	
2.39e+3	5.44e+5	
0.011%	11.344%	
¹³⁰ ln	¹³¹ ln	
3.52e+2	4.26e+4	
0.026%	18.989%	
¹²⁹ Cd	¹³⁰ Cd	
6.45e+1	3.06e+3	١.
0.936*1	23.913%	
0.000%	20.81076	

3mm aberrations

76% stopped in

the cell

132Sb	¹³³ Sb
	1.06e+6
	0.891%
131 Sn	¹³² Sn
	5.81e+5
	12.115%
456.	ana.
130 In	131 In
130 n 2.55e-1	¹³¹ n 4.83e+4
2.55e-1	4.83e+4
2,55e-1 0%	4.83e+4 21.563%

1 mm aberrations 81% stopped in the cell

Effect of degrader errors – 2 stage separator

Wedge defect of 1.0%

Wedge defect of 0.2%

No wedge defect

¹³² Sb	¹³³ Sb
	1.43e+6
424 =	1.195%
¹³¹ Sn	¹³² Sn
7.1e-7	8.1e+5
0%	16.901%
¹³⁰ In	¹³¹ In
2.6e-1	7.01e+4
0%	31.283%
¹²⁹ Cd	15vlCd
474.0	5.40
1.74e-2	5.12e+3
0%	40.005%

¹³³ Te	¹³⁴ Te
	0.77
	6.77e+3
	0%
¹³² Sb	¹³³ Sb
3.65e+1	2.75e+6
0%	2.3%
¹³¹ Sn	¹³² Sn
9.72e+2	7.29e+5
0.005%	15.218%
130 In	131 In
3.04e+1	5.72e+4
0.002%	25.51%
129Cd	¹³⁰ Cd
- Cu	Cu
2.27e+0	4.1e+3
0.002%	32.017%
0.00270	32.01170

¹³¹ Te	¹³² Te	¹³³ Te	¹³⁴ Te
		7.57e+1	5.66e+6
		0%	0.185%
¹³⁰ Sb	¹³¹ Sb	132 Sb	¹³³ Sb
1.40 .4	4.00	0.70 . 0	0.00 .0
4.12e+1	4.38e+5	2.79e+6	2.66e+6
0%	0.045%	0.748%	2.23%
¹²⁹ Sn	¹³⁰ Sn	¹³¹ Sn	¹³² Sn
3.8e+2	5.42e+4	2.53e+5	1.74e+5
0%	0.07%	1.179%	3.624%
¹²⁸ In	129 in	130In	¹³¹ ln
		, i	
2.86e+1	2.82e+3	1.54e+4	9.76e+3
0%	0.045%	1.136%	4.355%
127 Cd	¹²⁸ Cd	¹²⁹ Cd	¹³⁰ Cd
3.44e-1	1.95e+2	1.26e+3	6.27e+2
0%	0.035%	1.283%	4.901%
¹²⁶ Ag	127 Ag		
1.35e-3	1.41e+1		
0%	0.027%		

A Possible RIA Separator Configuration

Optical Layout of the HA Separator

Fragments after Slits H

132Sb	133Sb
	1.43e+6
	1.195%
131 Sn	132Sn
9.81e-7	8.1e+5
0%	16.902%
130 n	131 ln
130 _n 3.6e-1	131 In 7.01e+4
3.6e-1	7.01e+4
3.6e-1 0%	7.01e+4 31.284%

Slits H

a		
¹³² Te	¹³³ Te	¹³⁴ Te
	2.69e+2	
	0%	
131 Sb	132Sb	133Sb
4.77e+6	7.5e+7	1.03e+7
0.486%	20.107%	8.615%
¹³⁰ Sn	¹³¹ Sn	¹³² Sn
1.94e-2	9.52e+5	1.88e+6
0%	4.43%	39.226%
¹²⁹ ln	¹³⁰ ln	¹³¹ ln
	1.74e+3	1.01e+5
	0.128%	44.892%
¹²⁸ Cd	129 Cd	¹³⁰ Cd
	1.89e+1	6.04e+3
	0.019%	47.233%

Fragments after Slits P

Gas Cell

Momentum Compression Technique

Range straggling can be reduced to 10% larger than the range straggling of monoenergetic ions.

H. Geissel et al. NIM A282 (89) 247

Minimum momentum compression:

$$\delta_{\min} = (Mx_o/D) (1-t/R)^{-1}$$

 $\delta_{\min} = (1.0*.2/3.0) (1.25) = .08 \%$

Range straggling limit corresponds to .1%

Implantation Depth of Fragments – 2 stage

Implantation Depth of Fragments – 1 stage

LISE 6.2.23

GSI and RIKEN plan two separator stages

H. Geissel et al.

Pre-Separator First Order Optics

Full High Acceptance Separator First Order Layout

Fragment Separator R&D Issues

- Software development of the program LISE to be able to model all aspects of the separation and stopping process is underway and should continue.
- Preliminary designs have been investigated, but a full design of the separators is necessary to set the magnet parameters and civil construction details.
- A number of significant R&D issues remain.
 - Optimize acceptance (6% to 18%) while keeping aberrations at acceptable levels
 - Study radiation fields and damage on system components
 - Beam and fragment dump (isotope harvesting)
 - Wedge uniformity and momentum compression

